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Abstract

Seismic response records from the CSMIP database are used to formulate expressions for
the expected value of damping ratios as a function of available regressors. The paper discusses
the source of the high variance in the identification of damping and proposes mechanisms for the
correlation between fundamental building frequency and damping as well as for the observation
that damping increases with the mode number. The data analyzed is restricted to cases where the
ground accelerations exceed 0.05g and the values obtained, not surprisingly, prove notably larger
than those of previous studies, where very small amplitude vibrations were used. Reduced to the
most basic observation the results show that the damping ratio of steel buildings (for linear but
not ambient level vibration) is typically larger than the widely used 2%, while 5% is reasonable
for concrete.

Introduction

The term damping is used to refer to the collection of mechanisms by which systems
dissipate energy. Although the inherent damping of structural systems is not viscous, velocity
proportional dissipation is widely used because it leads to mathematical simplicity and because,
at least for small damping, it can be calibrated to mimic the actual dissipation well. In practice it
is customary to specify damping through modal damping ratios, defined as the quotient of the
damping constant of the mode to the minimum value for which the response to arbitrary initial
conditions does not have harmonic terms. The problem of extracting damping of viscously
damped linear systems from input-output data is a standard problem in identification and exact
results are obtained by all consistent algorithms when the data generating system satisfies the
assumptions (Juang 1994, Verhaegen and Verdult 2007, Van Overschee and De Moor 1996,
Heylen et al. 1997).

Notwithstanding the availability of theory, estimation of consistent damping values from
measured response is difficult in structures subjected broadband excitation. The reason for this
will be discussed in some detail in the body of the paper but at this point we note that the result is
essentially a consequence of the fact that the information (more precisely the Fisher information)
encoded in the response data about damping is low. Low information implies that the estimated
damping is a random variable with high variance and thus that realizations can differ
substantially, either because the data set changes (even though the structure is the same) or
because, for a given data set, details of the identification approach vary. One early example of
discrepancies in damping estimates obtained for the same data set is that of the 12 high rise
buildings subjected to the San Fernando earthquake, considered initially by Hart et al., (1975)
and a few years later by McVerry (1979, 1980).
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Notwithstanding the high variance, predictors for damping have been derived from the
examination of data sets by various researchers. For example, Zhang and Cho (2009) extracted
damping ratios from ambient vibration data for 82 buildings in Xi’an, China and proposed an
expression for the first mode damping. Other studies include those by Jeary (1986), Lagomarsino
(1993), Tamura et al. (1996), Sasaki (1998) and Satake et al. (2003). In most previous studies
where large data sets have been considered the vibration amplitudes have been very small and, as
a consequence, the damping values obtained can be considered a lower bound. In this study we
limited examination to responses where the peak ground acceleration was no less than 0.05g. The
cases that satisfied this limit were 69 concrete buildings, 44 steel, 14 masonry and 5 wood
structures. Since the response accelerations considered here are significantly larger than in most
of the previous studies, we expected the damping values to be larger and the results obtained
confirmed this expectation.

In addition to the results of the identification and the regression the paper presents an
examination of the variability in damping identification and offers some discussion on the
observed trends. The theoretical base of the identification approach is summarized in Appendix
A and the numerical values of the identified damping and the regressors for each considered case
are presented in Appendix B.

Background and Relations
Equations of Motion

Let the subscript 1 stand for coordinates that are not prescribed and 2 for those that are.
The equations of motion of a viscously damped linear system without external excitations can
then be written as

[l WfaL o0 G Kalin) o "
M 21 M 22 y2 C21 C22 y2 K21 K22 y2 0

The displacements that are not prescribed can be expressed as a linear combination of the
prescribed ones plus a residual, namely

y; =1y, +U 2)
which, when substituted into the top partition of eq.1 gives
M Ui+Cu+K u=—M,+M,nNy,-(C,+C,ny,—(K,+K,ny, 3)
Since the matrix r is arbitrary, it can be selected to cancel any of the terms on the rhs of eq.3,

taking r as
r=-K;/K, 4)

40



SMIP12 Seminar Proceedings

neglecting the damping contribution to the rhs term, and recognizing that for lumped mass
models one has M, = 0, one gets

M, U+C u+K u=-M,ry, (5)

which is the conventional expression used to represent earthquake excitation. The point to note
here is that the properties on the matrices on the Ihs of eq.5 are those of the system with restraints
at the prescribed coordinates. This means that if only horizontal motion is used to define the
input, the properties that a system identification algorithm obtains include the flexibility and
dissipation at the soil structure interface in all DOF, other than horizontal translation. For
familiarity in the subsequent treatment we drop the subscripts in eq.5 and replace Y, by the more

commonly used X, , namely, we use
MUi+Cu+Ku=-MrX, (6)

where, for 2D single component input r is a vector of ones.

Damping Ratio
Let the rhs of eq.6 equal zero, namely
Mu+Cu+Ku=0 (7)

the solution to eq.7 is of the form u(t) = 204 w.e" and one finds, by substitution that
[ Ms’ +Cs; +K Jy; =0 (8)

where ¢;’s are scalars. The values of S;’s that satisfy the equation are complex and come in
complex conjugate pairs. Writing the solution in terms of its real and its imaginary part, calling
on Euler’s identity, and replacing S by the value at the solution, A, one finds that

u(t) = D are™ (cos(,t) +sin(4,1) ©)

which shows that the rate of decay of the free vibration is determined by the real part of the
eigenvalue and the vibration frequency by the imaginary. The definition of damping ratio, which
does not require that the damping be classically distributed, is

_ﬂ’R
4l

¢= (10)

Eq.10 allows for a simple appreciation of why it is difficult to identify damping ratios with low
variance. Namely, let the true pole for a given mode be a point in the complex plane and let there
be a region around the pole where, due to noise, the identification algorithm places the pole.
Assume the region of uncertainty around the pole is a circle of radius r, where r is a fraction of
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the pole magnitude, sayr = o |/1| . Noting that the magnitude of the pole is an estimate of the

undamped frequency (exact for classical damping) and recognizing that « is small, one
concludes that the variability in frequency is small. The estimation of damping, however, which
is given by eq.10, can experience much larger variations. In fact, examination of the geometry
shows that the percent error in the frequency is essentially equal to & while the damping ratio,
within the uncertainty circle, ranges from the true value to plus or minus . Let « be 0.02, for
example, in this case the frequency error is no more than 2% but the damping ratio can be over
or under estimated by 0.02. If the true damping is 5%, one gets values as large as 7% and as low
as 3%. To determine if the circular assumption for the uncertainty region is reasonable, we
carried out a Monte Carlo study where a system was identified 1000 times using random
realizations of the noise. As can be seen from fig.1, which shows results for the first and the
second pole, the circular premise is not unreasonable.
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Figure 1. Uncertainty of the real part vs. the imaginary part of the 1* pole and 2™ pole in a 10-
DOF system identified using white excitation and 5% additive noise.

Some Proposed Damping Predictors

Predictors for damping in buildings have been proposed through the years and some are
summarized next:

Table 1. Damping Predictors
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Expression Source
£, =0.01f +1072x/H Jeary (1986)
¢, =0.013f, (Steel) ¢, =0.014f, (RC) Satake et al. (2003)
¢, =1.945+0.195T > Zhang and Cho (2009)
¢, =0.013f, +0.0029 (Steel) Sasaki (1998)
£ =0.014f, + 470% —0.0018 (Steel)
Satake (2003)
£ =0.013f + 470% +0.0029 (RC)
“= % FAly (ﬁj Lagomarsino (1993)

a =0.0072, B = 0.0070 (RC) & = 0.0032, 4 = 0.0078 (Steel)

For higher modes damping ratios: &, =(1.3~1.4)h, , (Steel)
¢, =14h (RC) Satake et al. (2003)
¢ =(1.7~1.8)h _, (SRC)

Discussion

Inspection of the expressions in Table 1 shows that the damping ratio tends to increase
with frequency and, although only noted in some of the expressions, that it also tends to increase
with amplitude. Justification for correlation with amplitude is evident, since some energy
dissipating mechanisms “turn on” only when the amplitude crosses some threshold, but the
rational for the correlation with frequency is less apparent. We contend here that the causal
connection may not be with frequency but with some measure of the size of the interface
between the structure and the ground. Another item worth commenting on is the issue of how the
damping ratios in higher modes compare to that of the first mode. In this regard Satake (2003)
has postulated, based on a trend observed in the first few modes, that the expected value of the
damping ratio is higher in the modes above the fundamental. The assertion is consistent with the
idea that damping increases with frequency but our contention is that the observation derives
from the effectiveness of the mode shape in activating the dissipation mechanism. To illustrate,
we formulated a 6-story one bay model where the damping is assumed to come from dashpots of
equal magnitude located at each of the connections between beams and columns and computed
the equivalent modal damping for the six modes. Results for the case where the behavior is
dominated by frame action (relatively rigid beams) and where flexure dominates (relatively
flexible beams) are depicted in fig.2. As can be seen, the damping increases in the early modes
(magnitude depending on the relative beam-column stiffness) but eventually decreases, as the
joint rotations for sufficiently high modes (due to the wavy nature of the mode) are small. It is
interesting that the results for the shear type behavior are (in this case at least) in qualitative
aggeemednt with the empirical result proposed by Satake for increases from the 1% to 2™ and the
2" to 3" mode.
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Sensitivity of Identified Damping to Nonlinear Response

While an increase in damping is expected when the amplitude grows, the effect is not as
large as one may anticipate. Support for the contention is found in the short duration over which
the nonlinearity is activated for earthquake input. To illustrate, the identified frequencies and
equivalent damping of a SDOF with a frequency of 1 Hz and 5% viscous damping were obtained
from identification for three different response levels using the Whittier ground motion. The first
level is linear and is used to confirm that the ID is able to identify the correct model. The other
two correspond to nominal displacement ductility levels of 2 and 4. The identified damping
values are {5, 5.82, and 8.4} percent and the identified frequencies are {1, 0.99, and 0.98} hertz
respectively. The increase in damping, especially at ductility 2 is very modest. Plots of the
resulting force vs. drift are depicted in fig.3.
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Figure 2. Ratio of damping between various modes in a 6-story model with dissipation
simulated with dashpots at the beam-column joints.
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Figure 3. Force vs. drift for three response levels (a)-(c)

44



SMIP12 Seminar Proceedings

Uncertainty in Damping Estimation

This section presents some discussion on the estimation of damping from the perspective
of the “information content” of a parameter in available data. It is shown that for conditions that
are typical the coefficient of variation of damping ratios can be more than 50 times higher than
that of frequencies. Similar results on the identification of ARMA models have been reported in
Gersch (1974).

The Cramér-Rao Lower Bound and the Fisher Information

The accuracy with which any parameter can be estimated from noisy data is limited by
the amount of information on the parameter that is contained in the data. For any distribution of
the noise affecting the input and the output, the lower bound to the covariance X that a parameter
estimator can have is known as the Cramér-Rao Lower Bound (CRLB). The CLRB depends only
on the statistical distribution of the noise and on the sensitivity of the data to the parameter. The
inverse of the CRLB is known as the Fisher Information (FI), which indicates “how much
information” on the parameter is contained in the data set. Technically, the FI is defined as

a 2
|(9)_E(£10g f(Y |9)} (11)

where f(Y |@) is the probability density function of the observed data Y given the parameter 6.

If the sensitivity of the likelihood of the noisy data to changes in the parameter is high, then the
derivative in eq.11 is large and so is I (€) . In practice, the likelihood function f(Y |#) is in

general unknown so other quantities derived from the data are used. For example, if the data can
be used to generate a vector X that is normally distributed having a mean that depends on the
parameters, y(#) , and a covariance X, the FI of the parameter € contained in X can be obtained

as

16)=1 (6)'S77 (0) where J (e)zg—g. (12)

Denoting X, as the covariance of the real and imaginary part of a pole, the FI of the frequency
and the damping follows from eq.12 as

1, f)=1 2T ., (13)

where the sensitivity of the pole with respect to damping ratio and frequency is given by

_ARMALIW) B e

¢ T 1 (14)
Toaen fea-gy: iog ]
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Due to the relation between the FI and the CRLB, an analytical relationship between the
coefficients of variation of damping and frequency can be obtained from eq.14. This relation
shows that the ratio depends only on the damping ratio. Assuming that the uncertainty region
around the complex poles is circular, as depicted in the Monte-Carlo simulation in fig.1, the
ratios between the coefficients of variation are shown in fig.4. As can be seen, the uncertainty on
the damping ratios is around 50 times higher than that for the frequencies at& =0.02, and the

ratio is near 25 for £ =0.05 .

e(z) /el

1 1 1 1 1 1 1 1
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
damping ratio 2

Figure 4. Range of the ratio of the coefficient of variation of damping and frequency when the
uncertainty region around the pole is circular

Regression Analysis

Linear Regression

In a first step we considered fitting the damping values to a linear expression using a
single regressor, x, namely

{=a,+oX (15)

where x is taken as either: a) identified frequency (f), b) building height (H), c) spectral
acceleration (SA), d) spectral velocity (SV), e) spectral displacement (SD), f) peak ground
acceleration (PGA), g) peak ground velocity (PGV) or h) peak ground displacement (PGD) or
their inverses. For each regression, the coefficient of determination was computed. This
coefficient is defined as

Z(Yi - 7)2

RR=l-<——
Z(Yi - fi)2

(16)
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where y; is the identified value, ¥ is the mean of the identified results and f; is the prediction

given by the regression equation. The regression was carried out for the first mode damping ratio
{, for steel, concrete, masonry, and wood buildings. When the mode considered is dominated by
translation in one direction, the ground motion in this direction was used to compute the ground
motion parameters. When the mode is strongly coupled, or torsional, we used the average of the
ground motion parameters for the two directions. In the case of steel buildings the best
correlation was found with building height and the results are depicted in fig.5. The results for
concrete, masonry and wood, showing the correlation with height and the correlation that led to
the highest R value are shown in fig.6 (a)-(f).
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Figure 5. Linear regression for first mode damping ratio vs. building height - Steel buildings

Multivariate Regression

To investigate whether using more than one regressor could lead to major improvements,
we looked at the use Artificial Neural Networks (ANN). The idea was not to propose an ANN to
predict damping values but, if a simple network gave a notable improvement in the correlations,
then it should be possible to extract the nonlinear relation of the network and a simplified
expression perhaps could be formulated. To gain some appreciation of how the ANN performed
and to gain some confidence in the extraction of the function, we first applied the methodology
using a network having one input plus one hidden layer with two neurons. The results for
concrete buildings is shown in fig.7, where the equation identified by the network proved to be

-8.25
H

- =—O.37tanh(%—0.39)—1.07tanh( —-9.09)-1.04 (17)
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Figure 6. Linear regression for first mode damping ratio vs. building height and best linear
regression for concrete (a) & (d), masonry (b) & (e), and wood (c) & (f) buildings respectively.
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Figure 7. Non-linear regression using ANN for concrete buildings
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Needless to say, there is no justification for recommending the complicated expression in
eq.17, since the result is entirely dependent of the particular data set considered. Having
established that the ANN was working properly we tried it with the same configuration but using
two inputs. Table 2 shows the best R values obtained for each building type using one and two
regressors as well as the linear regression result. In the two regressor case, the first regressor is
either frequency or height or its reciprocal and the second regressor is any of the ground motion
related parameters. Although the two-input ANN offered the highest R values, as expected, the
improvements over the single input ANN are modest and it was concluded that there was no
good reason to pursue it, given the available data.

Table 2. Summary of R values for the regression analysis

R R R
ANN 2 par ANN 1 par Linear
Steel 0.79 0.72 0.53
Concrete 0.68 0.64 0.51
Masonry 0.93 0.81 0.78
Conclusions

The analytical investigations show that damping ratios identified from earthquake records
are realizations from a distribution with high variance. The reason for the high variance can be
traced to the low sensitivity of the transient response to the damping but it can also be visualized
from the pole location in the complex plane and the distribution of the uncertainty. In this regard
the paper shows that the coefficient of variation of damping estimates are 25 to 50 times larger
than the coefficient of variation of frequency estimates. The results of the present study are in
agreement with previous results which indicate that the damping ratio increases with frequency.
It is speculated here, however, that the causal relationship may be with the relative importance of
dissipation through the soil-structure interface and not with frequency per se. The paper suggests
that the relation between the damping of higher modes and the first one is likely governed by the
efficiency with which the mode shape activates the dissipation mechanism. It was found that
predictive equations more complex than linear regression with a single parameter could not be
justified, given the data. All and all the results show that damping in steel buildings is larger than
the 2% that is typically assigned while the widely used 5% is reasonable for concrete, if a single
value is to be used.
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Appendix A — Identification

Time domain algorithms are typically based on an indirect approach. Namely, a model
mapping the sampled input and the sampled output is obtained and then it is converted to
continuous time. The postulated model in sampled time has the form

x(k +1) = Ayx(k) + B X, (k) (a.1)
where the measurements are given by
y(k) =Cx(k) (a.2)
The procedure begins by noting that for the model in eq.a.1 the output is related to the input as
k .
y(k) = Y%, (k—j) (a.3)
j=1
where Yj, known as a Markov Parameter (MP) is given by
Y, =CA,/ "B, (a.4)

Once the MP are obtained from eq.a.3, the next task is to untangle the matrices {Ag4 Bq, C} from
the triple product. This is done by defining the Hankel matrix Hy as

Yk+1 Yk+2 o Yk+,B
Y Y e Y
= k:+2 k:+3 : k:+ﬂ (3.5)
Yk+a . o Yk+ﬁ+a—1
where a and B3 are user defined parameters and noting that with
Cd
C
p,=| o @6)
CyAs”
and
Qp=[By ABy AlB; - AJTBy] (a.7)
H, =P,AQ, (a.8)
so 1t follows that Hy
Ho =P, Qg (a.9)
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one then performs a singular value decomposition of Hy, namely

H,=RxS’ (a.10)

and after retaining only the N most important singular values, has
H, =R IS, (a.11)
where Ry contains the first N columns of R, Sy the first N columns of S and Xy is the diagonal

matrix having the N significant singular values. Splitting the diagonal singular value matrix into
the product of two matrices (E; and E,)

EE, =2, (a.12)
gives
Hy, =(RyE)(E, SL) (a.13)
and one can then take
P, =RE, (a.14)
Qy =E,S\ (a.15)

from where, given the definitions in eq.’s a.6 and a.7 one has that
e The first m rows of P, provide a realization for C.

e The first r columns of Q 2 provide a realization for Bg.

The matrix A4 can be obtained from the block Hankel matrix for k = 1, namely, given that
H, =P, A, Q; =Ry E/A, E,S| (a.16)
and the fact that Ry and Sy are orthonormal one gets
A, =E 'R\ H,S, E;' (a.17)

Discrete to Continuous Transfer

Once the sampled time model is available its conversion to continuous time follows as
(Bernal 2006)

1
A, =E1n(Ad) (a.18)
1,
B, :EAdle (a.19)
C,=C (a.20)

The damping ratios are obtained as the real part of the eigenvalues of A divided by their
magnitude.
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Table B.1. Data for regression analysis

Appendix B - Data

Station # Earthquake | ;(%) | Ta(s) | H(ft) | SA(g) | SV(cm/s) | SD(cm) | PGA(g) | PGV(cm/s) | PGD(cm)
58262 Loma Prieta 33 | 027 | 235 | 0.195 8.33 0362 | 0.108 12.77 2.38
47391 | Morgan Hill 84 7 | o059 | 30 |o0129 | 1187 1111 | 0.066 6.52 3.05
57502 LomaPrieta 83 | 023 | 316 | 0299 | 1095 0.409 | 0.109 27.96 19.67
58334 Loma Prieta 64 | 020 | NA* | 0.161 5.05 0161 | 0075 8.29 1.40
58334 7512279';6"6 55 | 018 | nA | 0133 3.78 0109 | 0.040 1.17 0.06
58334 Piedmont 49 | 018 | nA | 0135 3.80 0.109 | 0.068 2.75 0.22
58348 Loma Prieta 82 | 045 | 406 | 0222 | 1560 1119 | 0117 19.98 5.85
58348 Lafayette 67 | 042 | 406 | 0.063 411 0272 | 0055 2.12 0.17
23511 Whittier 54 | 029 | 405 | 0.110 4.89 0222 | 0046 2.04 0.14
23511 Chinohills 66 | 034 | 405 | 0232 | 1217 0650 | 0.130 11.94 2.30
23495 Big Bear 73 | 052 | 288 | 0369 | 29.72 2438 | 0174 12.40 1.92
23495 Landers 107 | 045 | 288 | 0272 | 19.14 1372 | 0.105 11.29 3.21
23495 Palm Springs 71 | 040 | 288 | 0137 8.54 0544 | 0.042 3.62 0.55
23495 | SanBernardino | 83 | 043 | 28.8 | 0.048 3.25 0.225 | 0.059 2.30 0.16
58263 Loma Prieta 4 | 015 | nA | 0139 3.17 0074 | 0.071 10.85 4.39
58503 Loma Prieta 6 | 029 | 375 | 0.204 9.17 0419 | 0.102 14.51 2.25
58503 Elcerrito 58 | 025 | 375 | 0.103 4.06 0.164 | 0.059 2.01 0.09
23622 Landers 71 | 024 | 1825 | 0.164 6.16 0235 | 0.090 14.40 8.09
25213 SantaBarbara | 55 | 032 | 33 | 1.043 | 5215 2660 | 0378 34.26 5.47
58235 | MorganHillsa | 6.1 | 025 | 33 | 0.201 7.73 0302 | 0.060 423 0.89
58235 Loma Prieta 81 | 030 | 33 |o0728 | 3371 1592 | 0.315 36.57 7.34
58196 Lafayette 68 | 033 | 558 | 0.115 6.01 0319 | 0056 2.40 0.13
58196 Piedmont 27 | 033 | 558 | 0.128 6.66 0353 | 0.061 2.42 0.23
89770 | Ferndale2007 | 41 | 037 | NA | 0664 | 38.69 2298 | 0.231 21.29 4.86
58488 Loma Prieta 42 | 025 | s0 | 0136 531 0211 | 0052 421 0.85
58462 Loma Prieta 54 | 096 | 848 | 0.106 | 1586 2.427 | 0.103 10.41 2.01
14311 Whittier 3 |o03sa| 71 |o0243| 1290 0699 | 0.094 6.15 0.72
14311 Chinohills 41 | 032 | 71 | 0.087 438 0225 | 0.066 7.66 1.43
24463 Whittier 38 | 143 | 119 | 0091 | 20.24 4602 | 0131 12.73 1.95
12284 | BorresoSPrings |5 | g6s | 502 | 0.044 467 0503 | 0.053 2.18 031

Jul2010
12284 X;';’gig 4 | 069 | 502 | 0104 | 11.22 1231 | 0.052 4.29 3.16
12284 Palm Springs 38 | 060 | 502 | 0.082 7.71 0739 | 0.090 8.06 2.40
23285 | SanBernardino | 29 | 052 | 67 | 0.012 1.01 0.084 | 0.059 1.35 0.07
24468 Northridge 4 | 159 | 1148 | 0.082 | 20.29 5126 | 0117 8.69 1.42
24468 Whittier 52 | 154 | 1148 | 0113 | 27.05 6.624 | 0324 20.07 2.37
24579 Landers 58 | 143 | 128 | 0053 | 11.80 2683 | 0.038 6.76 4.15
24579 Northridge 69 | 152 | 128 | 0092 | 21.67 5225 | 0.150 13.43 2.90
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Station # | Earthquake | £3(%) | Tai(s) | H(ft) | SA(g) | SV(cm/s) | SD(cm) | PGA(g) | PGV(cm/s) | PGD(cm)
47459 lomaPrieta | 55 | 035 | 663 | 0953 | 5258 2957 | 0359 54.87 18.23
58479 lomaPrieta | 42 | 034 | 65 | 0.164 8.65 0.465 | 0.070 15.10 421
58490 lomaPrieta | 45 | 1.00 | 78 | 0216 | 33.63 5353 | 0.114 16.16 2.66
24655 Northridge 55 | 052 | 67 | 0441 | 3548 2911 | 0286 19.08 4.44
24571 Landers 41 | 200 | 136 | 0.044 | 13.80 4392 | 0.036 6.37 2.03
24571 Northridge 41 | 213 | 136 | 0.024 8.08 2736 | 0.156 8.92 1.28
24571 | Sierra Madre 5 196 | 136 | 0.030 9.03 2819 | 0.104 7.54 0.75
58394 lomaPrieta | 44 | 172 | 104 | 0.136 | 36.50 10017 | 0.125 14.95 331
24385 | SerraMadre | 59 | 054 | 88 | 0.103 8.66 0741 | 0074 4.62 0.67
24385 Whittier 93 | 055 | 88 | 0241 | 2067 1.807 | 0.209 10.97 1.00
57355 | MorganHillgd | 3.6 | 091 | 124 | 0.144 | 20.48 2963 | 0.058 12.28 3.38
57355 Alum Rock 34 | 104 | 124 | 0063 | 1026 1700 | 0.071 5.81 1.14
57355 lomaPrieta | 3.6 | 101 | 124 | 0133 | 20.92 3363 | 0.086 18.11 9.93
57356 | MorganHillga | 38 | 061 | 96 | 0139 | 13.17 1270 | 0.054 12.10 2.84
57356 Loma Prieta 6 067 | 96 | 0185 | 19.40 2072 | 0.093 16.55 7.26
57356 Alum Rock 38 | 073 | 96 | 0088 | 1005 1167 | 0114 7.98 1.12
24322 Northridge 18 | 313 | 164 | 0.064 | 3141 15622 | 0.832 60.65 13.55
24322 Whittier 31 | 250 | 164 | 0.008 331 1315 | 0257 8.11 0.49
24322 Chinohills 22 | 154 | 164 | 0.015 3.66 0.896 | 0.073 3.39 0.29
58364 lomaPrieta | 3.5 | 0.80 | 1285 | 0.103 | 12.92 1645 | 0.047 7.57 1.35
14578 Chinohills 55 | 1.25 | 116 | 0.050 9.73 1.936 | 0.100 9.11 1.04
14578 Northridge 5 119 | 116 | 0.034 6.29 1192 | 0.069 5.47 1.36
24601 Northridge 42 | 116 | 1387 | 0.029 5.24 0970 | 0.021 1.66 0.58
24601 | SierraMadre | 2.5 | 1.01 | 1387 | 0.068 | 10.67 1715 | 0.068 5.24 0.71
24601 Landers 32 | 106 | 1387 | 0102 | 16.94 2.868 | 0.043 7.29 6.53
24581 Chinohills 85 | 179 | 155 | 0.010 2.68 0763 | 0.059 4.09 0.35
24236 Whittier 75 | 185 | 1383 | 0.041 | 1198 3532 | 0118 9.46 1.37
58483 lomaPrieta | 3.3 | 244 | 219 | 0057 | 21.67 8414 | 0.123 17.09 431
13589 Landers 45 | 082 | 1469 | 0124 | 1586 2.069 | 0041 6.31 2.84
13589 Northridge 42 | 085 | 1469 | 0092 | 12.16 1640 | 0076 5.56 1.74
58639 Piedmont 41 | 081 | 114 | 0012 1.52 0195 | 0.031 1.55 0.11
24680 Chinohills 46 | 147 | 161 | 0011 2.62 0613 | 0.027 2.01 0.25
58496 lomaPrieta | 67 | 033 | 252 | 0228 | 11.67 0609 | 0.102 6.41 0.919
24198 Chinohills 55 | 068 | 34 | 0077 8.28 0903 | 0.074 5.76 0.628
01699 &2'52";1% 51 | 016 | 124 | 0.149 3.62 0.09 | 0.059 2.54 0.216
01699 Jcl);c;t(i)'l% 38 | 015 | 124 | 0142 3.39 0.082 | 0.062 3.95 1.351
54331 MaLr:k";’th 41 | 017 | 319 | 0171 4.59 0126 | 0.124 3.85 0.215
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Station # | Earthquake | ;(%) | Ti(s) | H(ft) | SA(g) | SV(cm/s) | SD(cm) | PGA(g) | PGV(cm/s) | PGD(cm)
58506 Loma Prieta 5.2 0.71 | 462 | 0.282 31.22 3.524 0.110 20.35 4.730
23516 Landers 10.2 0.56 41.3 0.205 17.74 1.568 0.082 15.07 7.640
23516 Chinohills 9.5 0.49 41.3 0.161 12.28 0.958 0.069 4.78 0.419
23516 Ber:::dino 4.7 0.56 41.3 0.125 10.85 0.959 0.102 7.30 0.467
57562 Loma Prieta 6.5 0.74 49.5 0.320 36.72 4.297 0.177 18.47 6.665
24104 Chatsworth 5.6 0.46 41 0.161 11.64 0.858 0.084 6.12 0.365
24370 Whittier 2.7 1.28 82.5 0.088 17.66 3.604 0.226 12.51 1.270
24370 Sierra Madre 3.1 1.28 | 825 | 0.052 10.38 2.118 0.124 5.84 0.782
24609 Landers 9 0.74 | 785 | 0.153 17.57 2.057 0.083 10.40 5.070
24609 Northridge 5.5 0.75 78.5 0.083 9.75 1.167 0.056 9.29 2.720
14323 Whittier 6.4 139 | 104 | 0.035 7.63 1.688 0.073 8.53 1.163
24652 Northridge 4.7 0.26 71.5 0.344 13.89 0.573 0.205 14.04 3.069
23481 Landers 4.7 1.59 94.4 0.038 9.29 2.347 0.059 5.86 2.279
23515 Landers 2.8 2.00 | 117.6 0.091 28.47 9.063 0.088 14.95 7.451
23634 BigBear 4.2 0.50 69 0.104 8.01 0.631 0.062 5.04 1.471
23634 Landers 3.9 0.49 69 0.175 13.45 1.055 0.080 12.35 6.510
23634 Northridge 4 0.49 69 0.103 7.87 0.611 0.049 4.28 0.724
24248 Chinohills 3.1 0.69 | 147 | 0.048 5.19 0.569 0.052 3.16 0.521
24248 m;'rt;:sz 3.4 0.65 | 147 | 0.010 0.98 0.101 0.051 1.27 0.064
24249 Chinohills 3 0.71 | 134 | 0.065 7.16 0.808 0.059 2.91 0.326
24249 n;l’;lrtc:z 2.2 0.68 134 0.010 1.05 0.113 0.045 131 0.070
24514 Whittier 2.1 0.34 96 0.184 9.89 0.541 0.057 3.68 0.561
58261 Loma Prieta 5.6 0.69 52.5 0.229 24.62 2.702 0.061 8.61 1.938
14533 Whittier 4.9 1.19 | 265 | 0.067 12.48 2.365 0.048 5.73 1.244
14654 Northridge 2 2.08 | 188 | 0.046 15.10 5.007 0.128 11.39 3.149
24288 Chinohills 3.5 1.16 | 351.2 0.045 8.25 1.527 0.067 6.47 1.021
24569 Northridge 2.8 1.18 | 236 | 0.119 21.86 4.092 0.137 12.56 3.104
24602 Chinohills 1.9 1.79 716 0.013 3.67 1.044 0.078 6.59 0.925
24602 Landers 2.1 5.88 | 716 | 0.017 15.94 14.927 0.121 7.73 4.005
24602 Northridge 1.6 1.85 716 0.071 20.39 6.009 0.159 12.71 2.955
24602 Sierra Madre 1.6 1.72 716 0.027 7.38 2.026 0.113 8.05 0.935
24629 Chinohills 3.8 1.92 | 692.5 | 0.010 3.07 0.939 0.065 4.97 0.642
24629 Northridge 24 1.85 | 692.5 0.060 17.38 5.124 0.099 8.42 3.061
24643 Northridge 3.7 0.82 304 0.443 56.66 7.392 0.260 16.18 4.880
57318 Alum Rock 2 2.17 275 0.020 6.95 2.404 0.063 6.09 1.184
57357 Loma Prieta 1.2 222 | 2106 | 0.218 75.58 26.730 0.090 21.23 8.584
58354 Loma Prieta 2.1 1.33 | 201 | 0.039 8.12 1.724 0.079 6.85 0.795
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Station # Earthquake C1(%) | Ta(s) | H(ft) | SA(g) | SV(cm/s) | SD(cm) | PGA(g) | PGV(cm/s) | PGD(cm)
58480 Loma Prieta 3 | 227 | 2293 | 0.034 11.94 4317 | 0161 15.81 2.649
58532 Loma Prieta 28 | 217 | 564 | 0.159 54.07 18.709 | 0.203 26.39 7.879
12266 Anza 184 | 005 | 258 | 0.197 1.67 0.014 | 0.0750 2.510 0.148
14606 Northridge 54 | 019 | 76 | 0.093 2.70 0.079 | 0.1100 8.626 1571
14606 Chinohills 98 | 010 | 76 | 0.263 4.19 0.068 | 0.1290 11.922 1.824
14606 | Whittier Narrows | 57 | 018 | 76 | 0.023 0.63 0.018 | 0219 6.053 0.221
24517 Landers 107 | 009 | 415 | 0139 2.03 0.030 | 0.0536 7.119 3.158
24517 Northridge 155 | 006 | 415 | 0.119 1.20 0.012 | 0.0555 9.274 2.530
24517 Whittier 14 | 007 | 415 | 0133 1.48 0.017 | 0.0510 2.806 0.176
57476 Loma Prieta 104 | 010 | 26 | 0630 9.46 0.145 | 0.2647 3.599 0.189
58264 Loma Prieta 98 | 010 | 24 | 0477 7.60 0123 | 0.2081 33.690 14.157
58492 Loma Prieta 63 | 0.16 | 749 | 0.195 4.82 0122 | 0.0582 7.827 2.118
89473 Petrolia 191 | 005 | 22 | 0216 1.77 0.015 | 0.1263 17.767 4.415
89473 | FerndaleJan2010 | 125 | 008 | 22 | 0.366 4.57 0.058 | 0.1414 11.807 2.137
89473 Afteetrrs‘:;ack 159 | 006 | 22 | 0482 474 0.047 | 0.1599 12.489 2.330
89494 | FerndaleJan2010 | 12.7 | 0.08 | 447 | 0.565 6.94 0.087 | 0.2161 22.426 5.183
12759 Anza 125 | 008 | 123 | 04334 5.41 0.069 | 0.2247 10.858 0.923
12759 Bo"ﬁjglcz’g‘l”g ngs | gg | 011 | 123 | 0.1933 3.43 0.062 | 0.0657 4.441 0.785
36695 San Simeon 16 | 006 | 165 | 1.2786 | 1247 0124 | 0.4484 30.092 7.341
36695 Atascadero 11.7 | 009 | 165 | 0.1095 1.46 0.020 | 0.0562 1.426 0.049
89687 | Ferndalelan2010 | 146 | 0.07 | 26 | 05131 5.48 0.060 | 0.2462 26.074 5.340

*NA: Information is not available on CSMIP website
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